
xairy.io

Lights Out:

Covertly turning off

the ThinkPad

webcam LED indicator

Andrey Konovalov, xairy.io

POC, Seoul
Nov 8th, 2024

https://xairy.io


xairy.io

Agenda

● Introduction to USB and built-in laptop webcams

● Fuzzing ThinkPad X230 webcam over USB to find hidden vendor requests

○ Building bricking-resistant webcam fuzzing setup

○ Finding USB requests for reflashing webcam SROM firmware

● Leaking and reverse engineering webcam firmware

○ Patching SROM to get code execution on webcam

○ Leaking and reverse engineering webcam Boot ROM

● Finding way to control webcam LED over USB

○ Building USB-based implant for executing arbitrary code on webcam

○ Using implant to figure out how to control LED

● Applicability of approach to other laptops

2



xairy.io

Introduction

3



xairy.io

How it started

● A while back, I gave a talk on Introduction to USB Hacking

● Coming back from conference, I got stuck in airport

● Had ThinkPad X230 with me (that I used for USB demos)

● Was bored, decided to do a bit of USB fuzzing 😄

4

https://github.com/xairy/usb-hacking


xairy.io

Host Device
Device plugged into Host

— What are you?

— I'm a webcam

— What kind of settings do you have?

— These are my settings

(Sends USB descriptors)

(Sends GET_INFO responses)

— Alright! You're now connected

(Sends requests) (Responds to requests)

(Sends GET_INFO requests)

USB is host-driven — Enumeration [simplified]

(Sends GET_DESCRIPTOR requests)

(Sends SET_CONFIGURATION request)



xairy.io

Host Device— What do you see?

— Here's the current frame

— What do you see?

— Here's the current frame

— What do you see?

(Sends requests) (Responds to requests)

— Here's the current frame

USB is host-driven — Subsequent communication



xairy.io

USB control requests

● Control requests — One of USB request types

● Used during enumeration to find out Device information and set up Device

● Can be used after enumeration to reconfigure Device or send commands

7



xairy.io

USB request direction and control request categories

● USB requests have direction that specifies data flow

○ IN (Device to Host) or OUT (Host to Device)

○ Note: All requests are still initiated by host

8

● Control requests are categorized into Device, Class, and Vendor

○ Device — Standard requests defined by common USB specification

○ Class — Requests specific to USB Class (HID, Mass Storage, UVC, ...)

○ Vendor — Non-standardized requests for vendor-specific use



xairy.io

Checking list of USB devices on X230

$ lsusb

Bus 002 Device 002: ID 8087:0024 Intel Corp. Integrated Rate Matching Hub

Bus 002 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub

Bus 001 Device 003: ID 5986:02d2 Acer, Inc Integrated Camera 

Bus 001 Device 002: ID 8087:0024 Intel Corp. Integrated Rate Matching Hub

Bus 001 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub

...

9

● X230 webcam is internally connected over USB (like in many other laptops)

● 💡 Let's try fuzzing vendor USB requests!



xairy.io

Fuzzing vendor requests

10



xairy.io

Fuzzing USB vendor IN (read) requests

dev = usb.core.find(idVendor=0x5986, idProduct=0x02d2)

def request_read(bRequest, wValue, wIndex, wLength):

bmRequestType = usb.util.CTRL_TYPE_VENDOR | usb.util.CTRL_RECIPIENT_DEVICE | usb.util.CTRL_IN

try:

msg = dev.ctrl_transfer(bmRequestType=bmRequestType, bRequest=bRequest,

wValue=wValue, wIndex=wIndex, data_or_wLength=wLength)

log(False, bRequest, wValue, wIndex, msg, None)

return msg

except usb.core.USBError as e:

log(False, bRequest, wValue, wIndex, None, e)

for x in range(0, 256):

request_read(x, 0, 0, 32)

11

Request parameters

Vendor + IN

Iterate over bRequest (fix wValue and wIndex as 0 for start)

Device IDs



xairy.io

Results of fuzzing USB vendor IN requests

$ ./fuzz.py

read, request = 0x00, value = 0x00, index = 0x00

 => success: 1

    b'01'

read, request = 0x01, value = 0x00, index = 0x00

 => [Errno 32] Pipe error

...

read, request = 0x06, value = 0x00, index = 0x00

 => [Errno 32] Pipe error

read, request = 0x07, value = 0x00, index = 0x00

 => success: 32

    b'83010402c3f3c37d808004150071423e2e6a000006023c3c00000000000000fe'

read, request = 0x08, value = 0x00, index = 0x00

 => [Errno 32] Pipe error

12

Request 0x00 returned 1 byte with value 0x01
Maybe some configuration setting...

Request 0x07 returned many bytes
Hm...



xairy.io

Exploring USB vendor IN request 0x07

$ ./fuzz_0x07.py

read, request = 0x07, value = 0x00, index = 0x00

 => success: 32

    b'83010402c3f3c37d808004150071423e2e6a000006023c3c00000000000000fe'

read, request = 0x07, value = 0x00, index = 0x20

 => success: 32

    b'00810083008000fd000003e80003030b0000000000000300030000000b000303'

read, request = 0x07, value = 0x00, index = 0x40

 => success: 32

    b'030003030303030b03000000000000005269636f6820436f6d70616e79204c74'

read, request = 0x07, value = 0x00, index = 0x60

 => success: 32

    b'642e0000000000000000000000000000496e74656772617465642043616d6572'

...

13

● Request 0x07 allowed

reading out lots of data

(64 KB in total)

● wIndex specified offset

within read data

● ⇒ Firmware? 😯



xairy.io

Fuzzing USB vendor OUT (write) requests

dev = usb.core.find(idVendor=0x5986, idProduct=0x02d2)

def request_write(bRequest, wValue, wIndex, data):

bmRequestType = usb.util.CTRL_TYPE_VENDOR | usb.util.CTRL_RECIPIENT_DEVICE | usb.util.CTRL_OUT

try:

msg = dev.ctrl_transfer(bmRequestType=bmRequestType, bRequest=bRequest,

wValue=wValue, wIndex=wIndex, data_or_wLength=data)

log(True, bRequest, wValue, wIndex, msg, None)

except usb.core.USBError as e:

log(True, bRequest, wValue, wIndex, None, e)

for x in range(0, 256):

request_write(x, 0, 0, 'a' * 32)

14

Iterate over bRequest, write 'aaaa...'



xairy.io

Oops

● As I was experimenting with OUT fuzzing, camera stopped responding 😕

● Rebooted X230, camera device disappeared 🤔 (was not on lsusb list)

● Did I brick it? 😅

● Did I manage to overwrite firmware? 😀

15



xairy.io

What's next? [1/2]

● Hypothesis: X230 webcam firmware can be overwritten over USB

● Want: Understand how to overwrite firmware (fuzzer did it by accident)

● Problem: Camera on my X230 is bricked 😢

16

● Solution: I like X230 ⇒ Have another X230, let's use it

● Outcome: Bricked camera on another X230 😅



xairy.io

What's next? [2/2]

● Hypothesis: X230 webcam firmware can be overwritten over USB

● Want: Understand how to overwrite firmware (fuzzer did it by accident)

● Problem: Cameras on both of my X230s are bricked 😢

17

● Solution: I really like X230 ⇒ ...

● Enough of that, let's build proper bricking-resistant setup



xairy.io

Looking at webcam module

18



xairy.io

Getting webcam module out

19

Plugged in over USB;
connector of unusual form



xairy.io

Original webcam module, outer side

20

Camera sensor, model unknown USB connectorLED



xairy.io

Original webcam module, inner side

21

Ricoh R5U8710 USB camera controller Pm25LD512 SPI flash chip



xairy.io

Internals of Ricoh R5U8710 from vendor website

22

https://www.nisshinbo-microdevices.co.jp/ja/applications/industrial/block/usb-camera-controller.html

SPI chip on webcam module Code gets uploaded to program RAM 😄

8051 CPU
inside

But there is
internal
(Boot) ROM
as well

GPIO

https://www.nisshinbo-microdevices.co.jp/ja/applications/industrial/block/usb-camera-controller.html


xairy.io

Building bricking-resistant setup

23



xairy.io

Ordering more webcam modules

● Original modules had corrupted firmware (by my fuzzing attempts)

● ⇒ Ordered more X230 webcam modules from Ebay

○ Some had different camera controller (FRU 04W1364)

○ Some had different hardware layout but same controller (FRU 63Y0248)

○ Got original boards too (found via 19N1L1NVRA0H marking, FRU unknown)

24



xairy.io

FRU 63Y0248: compatible module (has Ricoh R5U8710)

25

● Ended up using FRU 63Y0248

● SPI chip was on other side

than camera controller chip

⇒ Easier to desolder

● Firmware was slightly different

but compatible with original

R5U8710

SPI



xairy.io

Bricking-resistant setup

26

USB micro breakout adapter
with voltage regulator
(webcam module used

 3.3 V for VBUS) 

SPI chip moved to 
detachable TSSOP8 socket
(can now flash firmware
 via external programmer)



xairy.io

FT2232H Mini Module for restoring SROM contents

27

FT2232H Mini Module Socket with SPI chip



xairy.io

Can now freely continue fuzzing 😄
● If webcam gets bricked:

1. Connect socket to SPI programmer

2. Restore original SROM firmware to SPI chip

● Figuring out what each USB request does took a while

● Note: Bricking-resistant setup was used just for research

○ Final solution works by flashing webcam over USB without taking it out

28



xairy.io

Discovered USB vendor requests

29

bRequest Direction wValue wIndex Request data Deduced purpose

0x00 IN — Varies — Getting various settings?

0x01 OUT — — — Unlock SROM writing

0x02 OUT — Offset Data to write Write SROM at offset

0x03 OUT — — — Lock SROM writing

0x07 IN — Offset Read data Read SROM at offset

0xcd OUT ? ? ? Unknown

IN — Device to Host, OUT — Host to Device 



xairy.io

How fuzzer bricked webcam

30

● Fuzzer was iterating over bRequest from 0x00

● 0x01 unlocked SROM, 0x02 overwrote SROM (and 0x03 locked it)

● ⇒ Code corrupted, camera bricked. Lucky! 😁

bRequest Direction wValue wIndex Request data Deduced purpose

0x00 IN — Varies — Getting various settings

0x01 OUT — — — Unlock SROM writing

0x02 OUT — Offset Data to write Write SROM at offset

0x03 OUT — — — Lock SROM writing



xairy.io

Discovered settings for bRequest == 0x00

31

bRequest Direction wIndex Read value Extra information

0x00 IN 0x00 01

0x00 IN 0x01 00

0x00 IN 0x02 8080 Matches bytes 7–9 of SROM

0x00 IN 0x03 c3f3c37d Matches bytes 4–7 of SROM

0x00 IN 0x04 00000000

0x00 IN 0x05 107a

● These settings probably expose firmware version, hardware revision, etc.



xairy.io

Current status

● Can overwrite SROM firmware over USB

○ Note: Another part of firmware is in Boot ROM

● Want to control LED

○ Question: Where is LED connected to?

○ Question: Can I inject new code into firmware by overwriting SROM?

32



xairy.io

Tracing board

33



xairy.io

Reminder: LED on original webcam module

34

LED



xairy.io

Results of tracing LED

35

Connected to
pin of R5U8710
(through resistor)

Connected to VBUS
(USB power)



xairy.io

Need datasheet for R5U8710

● LED is connected to one of R5U8710 pins

○ But what is this pin?

○ Need pinout of R5U8710

● Found schematic for IU233N USB-EVB Circuit that uses R5U8710

○ Shows pin names, but layout does not reflect actual pinout of chip

● Failed to find other relevant documents or datasheets 😢

36

https://docid81hrs3j1.cloudfront.net/medialibrary/2017/12/IU233N-USB-EVB_circuit_170301.pdf


xairy.io

Getting datasheet

37



xairy.io

Advanced datasheet attack on vendor

38

— Hi! I'm looking for the datasheet for
    "USB 2.0 Camera Controller R5U8710".
    Could you send it to me? Thanks!

— Dear Andrey, please find the
    datasheet attached. Best Regards!

(R5U8710E1.00_DS_ns.pdf attached)

— 🤨🥳

Ricoh

(has datasheet)

Andrey

(wants datasheet)



xairy.io

Inside of datasheet

39

��



xairy.io

Information from datasheet

● Datasheet contained pinout of R5U8710

○ LED was connected to "GPIO B1" (notation from datasheet)

○ ⇒ Can likely be controlled from firmware! 🥳

● Next step: Figure out how to control GPIO B1 from firmware

○ No info on how firmware works in datasheet 😢

● (Datasheet not shown to avoid potential copyright issues)

40



xairy.io

Let's ask vendor for firmware documentation

41

Andrey Ricoh

— Could you also send me the firmware
    documentation or an SDK for this chip?

— Unfortunately, no.
    Thank you for your understanding.

(wants documentation) (has documentation)

— 😢
"You don't run the same gag twice. You do the next gag."



xairy.io

Analyzing and overwriting SROM

42



xairy.io

SROM hexdump [1/3]

$ xxd dump.bin

00000000: 8301 0402 c3f3 c37d 8080 0415 0071 423e  .......}.....qB>

00000010: 2e6a 0000 0602 3c3c 0000 0000 0000 00fe  .j....<<........

00000020: 0081 0083 0080 00fd 0000 03e8 0003 030b  ................

00000030: 0000 0000 0000 0300 0300 0000 0b00 0303  ................

00000040: 0300 0303 0303 030b 0300 0000 0000 0000  ................

00000050: 5269 636f 6820 436f 6d70 616e 7920 4c74  Ricoh Company Lt

00000060: 642e 0000 0000 0000 0000 0000 0000 0000  d...............

00000070: 496e 7465 6772 6174 6564 2043 616d 6572  Integrated Camer

00000080: 6100 0000 0000 0000 0000 0000 0000 0000  a...............

...

43

● USB strings!

● And probably

other settings

and descriptors



xairy.io

SROM hexdump [2/3]

...

00000720: d400 00f1 9d00 00b0 17ff ffff 90a5 e9e0  ................

00000730: 04f0 9000 15e0 30e1 5790 011a e0ff 9001  ......0.W.......

00000740: 22e0 5f90 a5ea f0e0 fd30 e22c 90a5 e8e0  "._......0.,....

00000750: b402 25e4 9000 21f0 9000 23e0 4420 f090  ..%...!...#.D ..

00000760: 0020 e044 01f0 9001 1ae0 54fb f090 0122  . .D......T...."

00000770: 7404 f090 a5e8 14f0 ed30 e414 90a5 e8e0  t........0......

00000780: 6404 600c e060 0912 b5dc 9001 2274 10f0  d.`..`......"t..

00000790: 9000 15e0 30e2 1790 002f e0c3 1320 e004  ....0..../... ..

000007a0: 7f00 8002 7f01 90a5 d2ef f012 f1d4 9000  ................

...

44

● Dense varied bytes

starting from 0x715

● ⇒ Code?



xairy.io

SROM hexdump [3/3]

...

00007fc0: 0000 0000 0000 0000 0000 0000 0000 0000  ................

00007fd0: 0000 0000 0000 0000 0000 0000 0000 0000  ................

00007fe0: 0000 0000 0000 0000 0000 0000 0000 0000  ................

00007ff0: 0000 0000 0000 0000 0000 0000 0000 0000  ................

00008000: 0108 0100 0001 4d00 0005 0001 0005 0000  ......M.........

00008010: 0000 0001 0000 0000 0000 0000 0001 0001  ................

00008020: 0000 0001 0000 01ff f000 1c00 0000 2800  ..............(.

00008030: 0100 6411 f800 7f00 7f00 0000 3f02 0001  ..d.........?...

00008040: 0000 7f00 ff01 3801 0001 8a00 0001 4d00  ......8.......M.

...

45

● Some other section

at 0x8000

(many 0s before)

● Purpose unknown

(yet)



xairy.io

Disassembling code as 8051 in Ghidra

46

● Looks like reasonable 

8051 code!



xairy.io

Issues with disassembly

● Most of code writes some values to some memory addresses

○ ⇒ Hard to understand what it does without documentation

● Absolute jumps point to bogus addresses

○ Don't know at which address code from SROM gets loaded

● Almost no instructions that work with 8051 GPIOs

○ ⇒ Don't know which 8051 GPIO corresponds to GPIO B1 (if any)

47



xairy.io

Experiment #1: Changing USB strings

● Let's confirm that we can indeed change camera firmware

● Changed "Integrated Camera" to "Pwned!" in SROM ⇒ Worked!

○ Camera sent "Pwned!" during enumeration

● Note: Firmware gets loaded from SROM during camera initialization

○ ⇒ Changing SROM in runtime does not reload firmware

○ ⇒ Need to power cycle camera for changes to apply

48



xairy.io

Experiment #2: Injecting infinite loops

● Injected infinite loop at various locations in code ⇒ Worked!

○ Camera got disconnected on timeout

49

Instruction patched
with SJMP to itself



xairy.io

Result of injecting infinite loops

● Found code locations that get executed during enumeration

○ Can overwrite to get code execution during enumeration

● Found code locations that get executed only when streaming video

○ Not executed during enumeration

○ Could arbitrarily corrupt to store any additional code

(used later for implant)

50



xairy.io

Experiment #3: Switching GPIOs and sleeping

● We know that LED is connected to "GPIO B1"

○ But don't know to which 8051 GPIO it corresponds:

8051 has P0, P1, P2, and P3

● 💡 Let's try changing values of all 8051 GPIOs and go into infinite loop

○ Loop prevents camera from crashing, as we overwrite purposeful code

51



xairy.io

Result of switching GPIOs

● Didn't work: no LED changes, no voltage changes on pin 😢
○ Tried switching GPIOs one by one, switching only one bit, etc.

○ Tried reconfiguring GPIOs as inputs vs outputs

(Note: Most info on web is wrong about how this works, 8051 GPIOs use latches)

52

Example patch that sets all bits
in all 4 8051 GPIO ports

https://developer.arm.com/documentation/ka004317/latest/
https://developer.arm.com/documentation/ka003428/latest


xairy.io

Current status

● What we have so far:

○ LED is connected to GPIO B1 pin of camera controller

○ Can execute arbitrary code on camera during enumeration

(but then camera loops or crashes)

● Problem: Changing values of 8051 GPIOs does not switch LED

○ Likely explanation: GPIO B1 is not tied to 8051 GPIOs

                                 (R5U8710 is a whole System-on-Chip after all)

53



xairy.io

Further goal and next step

● Hypothesis: Code responsible for controlling GPIO B1 is in Boot ROM

○ ⇒ Let's leak and reverse engineer Boot ROM

● How to leak Boot ROM?

○ Approach idea: Leaking Boot ROM by executing code on camera

                           (Maybe over USB? Details to be figured out)

● Next step: Get cleaner code execution without breaking enumeration

54



xairy.io

Carefully hooking code

55



xairy.io

Carefully hooking code

● Goal: Hook code without breaking enumeration (without infinite loop or crash)

○ Will allow adding runtime implant for leaking Boot ROM

● Approach:

1. Hook code executed during enumeration with jump to "free" location

2. Put side-effect–less implant at that location

3. Execute instructions overwritten by hook

4. Jump back to hooked code

56



xairy.io

Problems with jumping to "free" location

1. No "free" locations, code on SROM is densely packed

○ Solution: Overwrite code not executed during enumeration

(no crashes as long as we don't start streaming video from camera)

57

2. Cannot jump to absolute addresses

○ Don't know at which address code from SROM gets loaded

○ (8051 relative jumps only work with offsets from -128 to +127 bytes:

 probably usable, but let's figure out loading address instead



xairy.io

8051 memory spaces

58

CODE XDATA

RAM IRAM

0x0000

0xffff

...

● 8051 has multiple different memory spaces

● Many variants of 8051 that implement memory spaces differently

0xff

External RAM
(used for variables)

Internal RAM (variables +
Special Function Registers)

Indirectly-accessible
internal RAM (variables)

https://www.esacademy.com/en/library/technical-articles-and-documents/8051-programming/8051-memory-configurations-with-c-compilers.html
https://annamalaiuniversity.ac.in/studport/download/engg/csd/resources/8051%20Memory%20Organization.pdf
https://www.gpaamwala.org.in/lms/Microcontroller%20and%20Embedded%20Systems.pdf
https://developer.arm.com/documentation/101655/0961/8051-Instruction-Set-Manual/Architecture-Overview/Memory-Classes-and-Layout


xairy.io

Code loading during boot

59

CODE

0x0000

0xffff

● Boot ROM likely exists at offset 0x0000

● Part of SROM loaded into CODE space at unknown offset

Boot ROM

SROM

0x????

0x0000

0x0715 (suspected)

0xffff

Loaded during boot



xairy.io

Figuring out code loading address via at51

● at51 tool by 8051Enthusiast to the help!

○ Loads given 8051 firmware at each offset from 0 to 0x10000

and checks how many ljmp and lcall jump right behind ret

60

$ ./at51 base dump.bin

Index by likeliness:

        1:  0xa8eb with 563

        2:  0xa4fb with 211

        3:  0xa8df with 191

● Address looks promising:

0x715 + 0xa8eb == 0xb000

○ (0x715 — suspected offset of code start

                within dump.bin)

● ⇒ Code likely gets loaded at 0xb000

https://github.com/8051Enthusiast/at51
https://x.com/8051enthusiast


xairy.io

Hooking-based implant: before implanting

61

Executed
during enumeration

Not executed
during enumeration,

 can be overwritten
for implant



xairy.io

Hooking-based implant: after implanting

62

Jump to implant

Jump back

Instruction that was
at 0xb017

Implant code
goes here



xairy.io

Current status

● Have: Arbitrary code execution on camera during enumeration

○ But without breaking enumeration

○ Starting to stream video crashes camera, as code for that is overwritten

● Want: Boot ROM code

○ Code responsible for controlling GPIO B1 is likely there

● How to get Boot ROM out of camera?

63



xairy.io

Leaking Boot ROM

64



xairy.io

Typical approaches to leaking Boot ROM

● Idea: Leak over GPIOs! (by connecting logic analyzer)

○ Nope, I don't know how to control GPIOs from firmware 😢 —

that's what I'm trying to figure out!

● Idea: Leak over USB!

○ Nope, I don't know how to control contents of USB packets 😢

● No other external interfaces 😢

65



xairy.io

I can leak 1 bit of information! 💡
● I can differentiate between two cases:

○ Camera successfully enumerates (connects as USB Device)

○ Camera fails to enumerate

● ⇒ Make enumeration hooking-based implant do:

if CODE_BITS[N] == 0, go into infinite loop

else,                                proceed with enumeration

66



xairy.io

Worked! But slow

● Leaking 1 bit took ~1 second

○ SPI flashing is slow, USB enumeration is slow

● Up to 64 KB of Boot ROM

○ ⇒ Leaking would take up to 145 hours

● Feasible, but want something better

67



xairy.io

Reminder: Discovered settings for bRequest == 0x00

68

bRequest Direction wIndex Read value Extra information

0x00 IN 0x00 01

0x00 IN 0x01 00

0x00 IN 0x02 8080 Matches bytes 7–9 of SROM

0x00 IN 0x03 c3f3c37d Matches bytes 4–7 of SROM

0x00 IN 0x04 00000000

0x00 IN 0x05 107a

● These settings probably expose firmware version, hardware revision, etc.



xairy.io

Fetching CODE via known USB request 💡

69

bRequest Direction wIndex Read value Extra information

0x00 IN 0x00 01

0x00 IN 0x01 00

0x00 IN 0x02 8080 Matches bytes 7–9 of SROM

0x00 IN 0x03 c3f3c37d Matches bytes 4–7 of SROM

● Hypothesis: Value returned for xIndex == 0x03 is stored somewhere in memory

● I can copy 4 bytes of CODE to that variable (aka marker) and then fetch it over USB

● But at which address and in which memory space is marker stored?



xairy.io

Where is marker stored?

● Value of marker likely stored in XDATA

(many parts of SROM code access that memory space for variables)

70

● Value of marker matches bytes 4–7 of SROM

⇒ Can calculate its address based on base address from at51?

○ Tried, didn't work 😢
○ Looks like SROM is split into data and code parts

that are loaded at different addresses



xairy.io

Bisecting memory space to find marker 💡
● How to find out address of marker?

● Can leak 1 bit of information ⇒ Let's bisect memory space!

71

// Pseudo-code, actual code in 8051 assembly

for offset in range(0, 0x10000/2):  // Lower half of XDATA

if XDATA[offset : offset+4] == 0xc3f3c37d:

loop_forever()

● If enumeration fails ⇒ marker is in [0, 0x10000/2), else in [0x10000/2, 0x10000)

● Continue splitting region with marker in half until address is found (16 steps in total)



xairy.io

marker found!

● marker found at 0xf25e in XDATA

72

● Modified implant to write 0xdeadbeef to 0xf25e ⇒ Worked!

● MOVC 0xf25e, CODE[0:4] ⇒ Worked!

● Now can leak 4 bytes of CODE per reflash ⇒ Leaking would take ~4.5 hours

○ Still quite long, can we make it even better?



xairy.io

Dynamically providing offset via UVC settings 💡
● Maybe can store value for offset within CODE in camera memory

and make it persist across camera resets?

(Need to USB reset, as implant is executed during enumeration)

73

● Idea: How about using UVC settings (Contrast, Saturation, ...)?

○ Can be set via UVC control requests; values likely stored in variables

○ Might even be saved to SROM and loaded during camera boot

⇒ Will be preserved after power cycle, not only USB reset



xairy.io

Using Contrast and Saturation for offset

● Used uvcdynctrl tool to change various UVC settings to unique values

● Bisected XDATA to find them (values are 1 byte, so this was tricky)

74

● Found Contrast at address 0xafb9 in XDATA, Saturation at 0xafbd

● Both go from 0 to 100 ⇒ Can combine into single offset up to 16 KB

● Found them in SROM too at 0x802a and 0x802e

(That's what part of SROM at 0x8000 was for!)



xairy.io

Relying on UVC settings for leaking Boot ROM

● Scripted in setting offset via uvcdynctrl tool

and modified implant to copy CODE[offset:offset+4] to marker

● (Surprise!) Worked without resetting webcam:

My enumeration implant got executed when handling UVC requests too 🙃

● Result: Leaking Boot ROM took minutes 🥳
○ But had to do it in 4 parts, offset goes up to 16 KB

75



xairy.io

CODE and XDATA partially aliased

76

CODE

0x0000

0xffff

● Also leaked XDATA region

● Values in CODE from 0xb000 matched values in XDATA ⇒ Regions likely aliased

Boot ROM

SROM

0xb000

0x0000

0x0715

0xffff

XDATA

Aliased



xairy.io

Reverse engineering Boot ROM

77



xairy.io

Found handlers for USB vendor requests [1/2]

78

In Boot ROM



xairy.io

Found handlers for USB vendor requests [2/2]

79

...

...

...

...



xairy.io

XDATA addresses for USB request parameters

80

Address in XDATA Used for

0xa226 bmRequestType

0xa227 bRequest

0xa228 wValue_high

0xa229 wValue_low

0xa22a wIndex_high

0xa22b wIndex_low

0xa22c wLength_high

0xa22d wLength_low

● Reverse engineered from

USB request handlers code

● Can use in USB-based implant

(if will manage to build one)



xairy.io

Problem and next step

● Problem: Still couldn't figure out how GPIOs work... 😢
○ Lots of writes to assorted memory addresses once video streaming starts

○ One of them likely controls GPIO B1, but which one?

81

● Idea: Implement debugger for inspecting memory state in runtime 💡
○ And compare memory state with LED off vs on

○ ⇒ Need implant that doesn't crash camera when streaming video



xairy.io

Building universal implant

82



xairy.io

USB-based implant for debugging 💡
● Have Boot ROM ⇒ Can find out when which SROM code is called

○ ⇒ Can find code not called during enumeration or when streaming video

     and put implant there

83

● Better idea: Add custom USB request handler for implant

○ But can only overwrite SROM part of firmware, not Boot ROM

○ Any USB request handlers implemented in SROM?..



xairy.io

Function at 0xb4d3 called for every vendor (?) request

84

● Can patch this function is SROM

to add custom request handlers

● Function size is 42 (0x2a) bytes

// 0x40 == Vendor + OUT



xairy.io

Implanted handler for arbitrary write and arbitrary call

0000: MOV DPTR, bmRequestType    |    0x90, 0xa2, 0x26 

0003: MOVX A, @DPTR              |    0xe0

0004: CJNE A, #0x40, 0x21        |    0xb4, 0x40, 0x21

0007: INC DPTR                   |    0xa3

0008: MOVX A, @DPTR              |    0xe0

0009: ADD A, #0xbe               |    0x24, 0xbe

000b: JZ 0x8                     |    0x60, 0x08

000d: INC A                      |    0x04

000e: JNZ 0x18                   |    0x70, 0x18

0010: LCALL, 0xffff              |    0x12, 0xff, 0xff

0013: SJMP 0x10                  |    0x80, 0x10

0015: INC DPTR                   |    0xa3

0016: INC DPTR                   |    0xa3

0017: MOVX A, @DPTR              |    0xe0

0018: MOV R7, A                  |    0xff

85

0019: INC DPTR                   |    0xa3

001a: MOVX A, @DPTR              |    0xe0

001b: MOV R6, A                  |    0xfe

001c: INC DPTR                   |    0xa3

001d: MOVX A, @DPTR              |    0xe0

001e: MOV DPL, A                 |    0xf5, 0x82

0020: MOV A, R6                  |    0xee

0021: MOV DPH, A                 |    0xf5, 0x83

0023: MOV A, R7                  |    0xef

0024: MOVX @DPTR, A              |    0xf0

0025: MOV R7, #0x2               |    0x7f, 0x00

0027: RET                        |    0x22

0028: MOV R7, #0x0               |    0x7f, 0x02

002a: RET                        |    0x22

Arbitrary call, address can be patched in via arbitrary write
 (CODE and XDATA aliased for 0xb000+)

Arbitrary write in XDATA



xairy.io

Pseudo-code for implanted handler

void implanted_handler() {  // Placed at 0xb4d3 by patching SROM.

if (bmRequestType != 0x40)  // Vendor OUT request.

return;

if (bRequest == 0x41)  // 0x41 chosen arbitrarily.

call(0xffff);  // Called address can be patched in via AAW.

else if (bRequest == 0x42)

*(uint16_t *)wIndex = wValue_low;  // 1-byte AAW.

// Also provide proper value in R7 for compatibility with caller.

}  // Fits exactly into 0x2a bytes in 8051 assembly. 

86



xairy.io

Universal implant functionality

● Does not interfere with normal camera operation

● Can be used to write another implant anywhere within writable CODE

(top 20 KB of XDATA were aliased with top 20 KB of CODE;

 address and value to be written taken from USB request parameters)

● And execute that implant (with parameters from USB request)

87

● ⇒ Can use to leak any memory space over USB with LED off or on 🥳
○ Can still rely on marker for leaking data over USB



xairy.io

Figuring out LED control

88



xairy.io

Dynamic approach to figuring out LED control

● Hypothesis: Camera controller has memory-mapped GPIO

○ ⇒ There is address that maps to GPIO B

● Have ability: Executing arbitrary code with LED off or on

                      and leaking data from any memory space over USB

● Approach: Dump XDATA, RAM, and IRAM with LED off and then with LED on

○ Compare dumps and look for bytes with bit #2 changed (GPIO B1)

89



xairy.io

Comparing XDATA dumps

90

● Nothing interesting in diff of

RAM and IRAM dumps

● Diff of XDATA dumps was large...

○ But not many bytes had

only bit #2 changed

But this one did



xairy.io

And...

● Tried overwriting bit #2 at 0x0080 via universal implant...

○ Worked! LED controlled! 🥳🥳🥳

91

● GPIO B mapped to address 0x0080 in XDATA

○ As suspected, custom GPIO implementation

● Code is at github.com/xairy/lights-out

● Same webcam is used in X220 and likely other laptops from same era

https://github.com/xairy/lights-out


xairy.io

Demo

92



xairy.io

What about other laptops?

93



xairy.io

Requirement for attack: LED not tied to power on sensor

● If LED is not tied to power on camera sensor,

software control of LED is highly likely possible

● Tip to OEMs: Make it so LED is on whenever power on camera sensor is on

○ Firmware signature checking is great but bypassable

94



xairy.io

Cases for getting software control of LED [1/3]

1. LED can be turned off via UVC or vendor USB request

○ Essentially, software LED control is built-in camera functionality 

○ Need to figure out which request is used

95

https://raspberrypi.stackexchange.com/questions/43118/turning-off-the-blue-status-led-on-the-logitech-c920-usb-camera


xairy.io

Suspected example: ThinkPad X13

96

● No further details

from author

● My guess:

LED on X13

is controlled via

UVC or vendor

USB request

https://x.com/never_released/status/1835144150896812318


xairy.io

Cases for getting software control of LED [2/3]

1. LED can be turned off via UVC or vendor request

2. LED can be controlled from firmware, which can be overwritten over USB

○ Example 1: iSeeYou (MacBook 2008)

○ Example 2: Lights Out (X230, this presentation)

○ Can be mitigated by proper firmware signature checking

■ Checksum is not gonna cut it

97

https://www.usenix.org/system/files/conference/usenixsecurity14/sec14-paper-brocker.pdf
https://cohost.org/8051enthusiast/post/617826-some-pointers-for-re#:~:text=try%20changing%20the%20checksum


xairy.io

Cases for getting software control of LED [3/3]

1. LED can be turned off via UVC or vendor request

2. LED can be controlled from firmware, which can be overwritten over USB

3. LED can be controlled from firmware, which contains a vulnerability

○ Like memory corruption in USB request handler

that allows getting code execution on webcam

○ Not mitigated by firmware signature checking

98



xairy.io

Outro

99



xairy.io

Offer to action

● Try fuzzing built-in USB devices on your laptop

○ USB fuzzer in Python is 50 lines of code

● Relatively safe to fuzz IN requests

○ Device might crash due to memory corruption (e.g. with large wLength),

but power cycle should fix it (do full shutdown, not just reboot) 

● VERY UNSAFE to fuzz OUT requests

○ Might overwrite firmware and brick device

100



xairy.io

Takeaways

● Besides attacking USB Hosts, you can attack USB Devices

● Laptop webcams are often connected over USB internally

● Fuzzing is viable approach to find hidden USB requests

● Firmware of many USB devices can be flashed over USB

● 8051-based chips might have custom GPIO

● LEDs on many webcams can be controlled via software/firmware

● Putting sticker onto laptop webcam lens is not that paranoidal 😉

101



xairy.io

💜 Thank you! 

102



xairy.io

Differences between iSeeYou and Lights Out

103

MacBook 2008 (Cypress EZ-USB) ThinkPad X230 (Ricoh R5U8710)

Firmware Uploaded during boot over USB,
provided by OS

Stored on SPI flash SROM,
can be flashed over USB
(needs power cycle to apply)

LED Connected to sensor's STANDBY Connected to GPIO pin

Disabling LED Provide firmware that configures
sensor to ignore STANDBY

Flash firmware that allows
disabling GPIO pin

In both cases, webcam is connected over USB

https://www.usenix.org/system/files/conference/usenixsecurity14/sec14-paper-brocker.pdf


xairy.io

Commending Lenovo PSIRT team

● Lenovo PSIRT reached out after POC schedule got public

○ Asked for additional details about the attack

○ They care! 👍

● Comment from them:

"Older, EOL systems such as the X230 did not include validation for firmware updates. 

Since 2019, our image processors have included digital signature checks for camera 

firmware, and we have supported secure capsule updates with write protection".

104



xairy.io

Other acknowledgements

● Thanks to Lev Ustselemov and Sergey Korablin

for tremendous help with soldering and other electronics-related things!

● Thanks to 8051Enthusiast and Travis Goodspeed

for awesome articles and talks about 8051!

● To Ricoh for providing R5U8710 datasheet!

105

https://brs.im/en/
https://x.com/8051enthusiast
https://x.com/travisgoodspeed

